Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points---Fold and Canard Points in Two Dimensions
نویسندگان
چکیده
منابع مشابه
Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions
The geometric approach to singular perturbation problems is based on powerful methods from dynamical systems theory. These techniques have been very successful in the case of normally hyperbolic critical manifolds. However, at points where normal hyperbolicity fails, the well-developed geometric theory does not apply. We present a method based on blow-up techniques, which leads to a rigorous ge...
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملGeometric singular perturbation theory in biological practice.
Geometric singular perturbation theory is a useful tool in the analysis of problems with a clear separation in time scales. It uses invariant manifolds in phase space in order to understand the global structure of the phase space or to construct orbits with desired properties. This paper explains and explores geometric singular perturbation theory and its use in (biological) practice. The three...
متن کاملCanard Solutions at Non-generic Turning Points
This paper deals with singular perturbation problems for vector fields on 2-dimensional manifolds. “Canard solutions” are solutions that, starting near an attracting normally hyperbolic branch of the singular curve, cross a “turning point” and follow for a while a normally repelling branch of the singular curve. Following the geometric ideas developed by Dumortier and Roussarie in 1996 for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 2001
ISSN: 0036-1410,1095-7154
DOI: 10.1137/s0036141099360919